Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 13, 2026
-
Free, publicly-accessible full text available December 6, 2025
-
Concise Synthesis of Furo[2,3-b]indolines via [3,3]-Sigmatropic Rearrangement of N-Alkenyloxyindolesnull (Ed.)A concise new synthetic route to furo[2,3-b]indolines has been developed by taking advantage of the reactivity of N-alkenyloxyindole intermediates. These compounds spontaneously undergo [3,3]-sigmatropic rearrangement followed by cyclization to form hemiaminals as single diastereomers. Tin-promoted N-hydroxyindole formation followed by conjugate addition to activated alkynes provides simple and modular access to a diverse array of N-alkenyloxyindoles and their corresponding furo[2,3-b]indolines. Microscale high-throughput experimentation was used to facilitate investigation of the scope and tolerance of this transformation and related studies on the nucleophilic aromatic substitution and rearrangement of N-hydroxyindoles with halogenated arenes have also been evaluated.more » « less
-
Abstract A dearomative [3,3′]‐sigmatropic rearrangement that converts N‐alkenylbenzisoxazolines into spirocyclic pyrroline cyclohexadienones has been developed by using the dipolar cycloaddition of an N‐alkenylnitrone and an aryne to access these unusual transient rearrangement precursors. This cascade reaction affords spirocyclic pyrrolines that are inaccessible through dipolar cycloadditions of exocyclic cyclohexenones and provides a fundamentally new approach to novel spirocyclic pyrroline and pyrrolidine motifs that are common scaffolds in biologically‐active molecules. Diastereoselective functionalization processes have also been explored to demonstrate the divergent synthetic utility of the unsaturated spirocyclic products.more » « less
An official website of the United States government
